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Abstract

An important long-term goal in machine learning systems is to build learning agents that, like hu-
mans, can learn many tasks over their lifetime, and moreover use information from these tasks to improve
their ability to do so ef�ciently. In this work, our goal is to provide new theoretical insights into the po-
tential of this paradigm. In particular, we propose a lifelong learning framework that adheres to a novel
notion of resource ef�ciency that is critical in many real-world domains where feature evaluations are
costly. That is, our learner aims to reuse information from previously learned related tasks to learn future
tasks in afeature-ef�cientmanner. Furthermore, we consider novel combinatorial ways in which learn-
ing tasks can relate. Speci�cally, we design lifelong learning algorithms for two structurally different
and widely used families of target functions: decision trees/lists and monomials/polynomials. We also
provide strong feature-ef�ciency guarantees for these algorithms; in fact, we show that in order to learn
future targets, we need only slightly more feature evaluations per training example than what is needed
to predict on an arbitrary example using those targets. We also provide algorithms with guarantees in an
agnostic model where not all the targets are related to each other. Finally, we also provide lower bounds
on the performance of a lifelong learner in these models, which are in fact tight under some conditions.

1 Introduction

Machine learning algorithms have found widespread use in solving naturally occurring tasks in domains like
medical diagnosis, autonomous navigation and document classi�cation. Accompanying this rapid growth,
there has been remarkable progress in theoretically understanding how machine learning can solve single
tasks in isolation. However, real-world tasks rarely occur in isolation. For example, an autonomous robot
may have to accomplish a series of control learning tasks during its life, and to do so well it should employ
methods that improve its ability to learn as it does so, needing less resources as it learns more [24, 25]. As
we scale up our goals from learning a single function to learning a stream of many functions, we need to
develop sound theoretical foundations to analyze these large-scale learning settings.

Broadly, the goal of alifelong learneris to solve a series of many tasks over its lifetime by a) extracting
succinct and useful representations about the relations among previously learned tasks, and then b) using
these representations to learn future tasks more ef�ciently. In this work, we provide new insights into
this paradigm by �rst proposing a metric for lifelong learning that exposes an important type of resource
ef�ciency gain. Then we design algorithms for important and widely used classes of functions with strong
theoretical guarantees in this metric.

In particular, we consider a setting where evaluating the features of data points is costly and hence
the learner wishes to exploit task relations to improve itsfeature-ef�ciencyover time. Feature-ef�ciency
is critical in applications such as medical diagnosis and high-dimensional data domains where evaluating
feature values of a data point might involve performing expensive or intrusive medical tests or accessing
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millions of values. In fact, one of the reasons decision trees (which is one of the important function classes
we study in this paper) are commonly used in medical diagnosis [21] is that once the trees are learned, one
can then makepredictionson new examples by evaluating very few features—at most the depth of the tree.

We consider lifelong learning from the perspective of this feature evaluation cost, and show how we can
use commonalities among previously-learned target functions to perform much better in learning new related
targets according to this cost. Speci�cally, if we face a stream ofm adversarially chosenrelated learning
tasks over the same set ofN features, each with aboutS training examples, we will makeO (SmN ) feature
evaluations if we learn each task from scratch individually. Our goal will be to leverage task relatedness
to learn very few tasks from scratch and learn the rest in a feature-ef�cient manner, making as few as
O (S(m + N )) feature evaluations in total.

We study two structurally different classes of target functions. In Section 3 we focus on decision trees
(and lists) which are a widely used class of target functions [26, 23, 22, 8] popular because of their naturally
interpretable structure – to make a prediction one has to simply make a sequence of feature evaluations – and
their usefulness in the context of prediction in costly feature spaces. In Section 4 we analyze monomial and
polynomial functions, an expressive family that can approximate many realistic functions (e.g., Lipschitz
functions [2]) and is relevant in common machine learning techniques like polynomial regression, curve
�tting and basis expansion [27]. Our study of polynomials also demonstrates how feature-ef�cient learning
is possible even when the function class is not intrinsically feature-ef�cient for prediction. The non-linear
structure of both of these function classes poses interesting technical challenges in modeling their relations
and proposing feature-ef�cient solution strategies. Indeed our algorithms will use their learned information
to determine an adaptive feature-querying strategy that signi�cantly minimizes feature evaluations.

In Section 3, we present our results for decision trees and lists. First, we describe intuitive relations
among our targets in terms of a smallunknownset ofK “metafeatures” or parts of functions common to
all targets (think ofK much less thanN ). More speci�cally, these metafeatures are subtrees that can be
combined sequentially to represent the target tree. We then present our feature-ef�cient lifelong learning
protocol which involves addressing two key challenges. First, we need a computationally-ef�cient strategy
that can recover useful metafeatures from previously learned targets (Algorithm 3). Interestingly, we show
that the learned metafeatures can be useful even if they do not exactly match the unknownK metafeatures,
so long as they “contain” them in an appropriate sense. Second, we need a feature-ef�cient strategy that
can learn new target functions using these learned metafeatures (Algorithm 2). Making use of these two
powerful routines, we present a lifelong learning protocol that learns only at mostK out of m targets from
scratch and for the remaining targets examines onlyKd features per example (whered is the depth of the
targets), thus makingO (S(NK + mKd )) feature evaluations in total (Theorem 1).

In Section 4, we study monomials and polynomials which are similarly related throughK unknown
metafeatures. We adopt a natural model where the metafeatures are monomials themselves, so that the
monomial targets are simply products of metafeatures. In the case of polynomials, this de�nes a two-level
relation, where each polynomial is a sum of products of metafeatures. For polynomials, we present an
algorithm that learns onlyK of m targets from scratch and on the remaining targets, evaluate sO (K + d)
features per example (whered is the degree of the target), thus making onlyO (S(KN + m(K + d)))
feature evaluations over all tasks. More interestingly, in the case of large-degree monomials, our algorithm
may need fewer feature evaluations per example (K ) to learn the monomial than that needed (d) to evaluate
the monomial on an input point.

Next in Section 5, we consider a relaxation of the original model, more speci�cally, an agnostic case
where the learner facesm + r targets,r of which are “bad” targets adversarially chosen to be unrelated
to the otherm interrelated “good” targets. As a natural goal, we want the learner to minimize the feature
evaluations made on the training data of them good targets. We show that whenr is not too large, the
above lifelong learners can be easily made to work as well as they would whenr = 0 . To address greater
values ofr , we �rst highlight a trade-off between allowing the learner to learn more targets from scratch and
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learning the remaining targets with more feature evaluations. We then present a technique that strikes the
right balance between the two.

Finally, in Section 6 we present lower bounds on the performance of a lifelong learner for all values of
r , includingr = 0 by designing randomized adversaries. Ignoring the sample sizeS and other problem-
speci�c parameters, for smallr we prove a lower bound of
 ( KN + mK ) feature evaluations which proves
that our above approaches are in fact tight. For suf�ciently larger , we prove a bound of
 ( mN ), thereby
demarcating a realm ofr where lifelong learning is simply futile.

We present a summary of our results in Tables 1 and 2 below.

Problem Total number of feature evaluations
Decision trees of depthd O (S(KN + mKd ))

Decision trees of depthd in semi-adversarial model O
�

S( log K
pmin

N + m(K + d))
�

Decision trees of depthd with anchor variables O (S(KN + m(K + d)))
Decision lists of depthd O

�
S(K 2N + m(K 2 + d))

�

Monomials of degreed ~O (KN + m(K + d))
Polynomials of degreed, sparsityt O (S(KN + m(K + td)))

Table 1: Performance of our approaches

Range ofr Performance of algorithm Lower bound
0 � r � rmin O(S(NK + Km )) 
 ( NK + Km )

r 2 [rmin ; rmax ] O(S(
p

rKNm| {z }
�

p r max
r max( r

N � K ;1)KN

+ Km )) 

�

max
�

r
N � K ; 1

�
KN + Km

�

r � rmax O (SmN ) 
 ( mN )

Table 2: Performance of our algorithms for different values vs the lower bounds for different values ofr .

Here, we will de�nermin = max
� m

N ; KN
m ; K

�
andrmax = min

�
mN
K ; (N � K )2m

KN

�

1.1 Related Work

Related work in multi-task or transfer learning [14, 17, 19] considers the case where tasks are drawn from an
easily learnable distribution or are presented to the learner all at once. The theoretical results in that setting
are sample complexity results that guarantee low error averaged over all tasks [6, 7]. On the other hand,
research in lifelong learning has been mostly empirical [25, 13, 9, 24]. There has been a small amount of
recent theoretical work [5, 20]. [5] consider fairly simple targets and commonalities such as linear separators
that lie in a common low-dimensional subspace. [20] consider a setting where except for a small subset of
target functions, each target can be written as a weighted majority vote over the previous ones. [5] also
consider conjunctions that share a set of conjunctive metafeatures, but assume that the metafeatures contain
a unique “anchor variable”. Though decision trees have a more elaborate combinatorial structure than
conjunctions, in this work we are able to achieve strong guarantees for lifelong learning of decision trees
(and other classes) without making such assumptions about the metafeatures. We also note that one of
main technical challenges addressed by [5] is that of controlling error propagation during lifelong learning.
However, for the problems considered in this paper, it is possible to learn targets exactly from scratch, so we
do not have to deal with error propagation.
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Feature-ef�ciency has been considered in the single-task setting, often under the name of budgeted
learning [16, 11, 1], where one has to learn an accurate model subject to a limit on feature evaluations,
somewhat like bandit algorithms. [18, 3] consider a related problem in a multi-task setting with all tasks
present up-front, where the learner has free access to all features but uses commonalities between targets to
identify useful common features in order to be sample-ef�cient.

2 Preliminaries

In this section, we de�ne our notations (later summarized in Table 3) and present a high level protocol which
will provide a framework for presenting our algorithms in the later sections. We consider a setting in which
the learner faces a sequence ofm related target functionsg(j ) over the same set ofN features/variables
(where bothm andN are very large). The target functions arrive one after the other, each with its own set of
training dataS(j ) with at mostS examples to learn from. Also, feature evaluation (or equivalently, feature
query or feature examination) is costly: if we view our training data forg(j ) as anS � N matrix, we pay a
cost of 1 for each cell probed in the matrix.

Our belief is that the targets are related to each other through an unknown setF of metafeaturesthat are
parts of functions. More speci�cally, all targets in the series can be expressed by combining metafeatures
in F using a known set of legal combination rules, such as concatenating lists or trees. Our algorithms will
learn a set of hypothesized metafeatures~F that allows them to learn new targets using a small number of
feature evaluations except for a limited number of targets learned from scratch i.e., by examining all features
on all examples. We call~F our learned representation. Note that we will refer to~F as just metafeatures if
it is clear from context that it does not refer to the true metafeaturesF .

Then, our lifelong protocol is as follows. We make use of two basic subroutines: aUSEREP routine
that uses~F to learn new related targets, and anIMPROVEREP routine that improves our representation~F
whenever the �rst subroutine fails. We begin with an empty~F . On taskj , using ~F andS(j ) , we attempt
to cheaply learn targetg(j ) with USEREP. If USEREP fails to learn the target, we evaluate all features
in S(j ) and learng(j ) from scratch. Then, we provide~F andg(j ) as input toIMPROVEREP to update~F .
For clarity, we present this generic approach, which we will call as (USEREP, IMPROVEREP)-protocol, in
Algorithm 1. In the following sections, we will present concrete approaches for these subroutines, speci�c
to each class of targets. We will then analyze the performance of the protocol in terms of the total number
of feature evaluations (across all samples over all the tasks) given an adversarial stream of tasks.

Our setting can be viewed as analogous to that of dictionary learning [15, 10, 4] in which the goal is to
�nd a small set of vectors that can express a given set of vectors via sparse linear combinations. Here, we
will be interested in broader classes of objects and richer types of combination rules.

Notation Meaning
m No. of targets in sequence
N No. of features/variables
F True metafeature set/representation
~F Learned representation

K No. of true metafeatures
S No. of samples for each task

S(j ) Training data for taskj

Table 3: Important notations
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i , returns a score indicating the desirability of splitting the setS using featurei . For instance, ID3 uses
information gainas its splitting criterion,1 and an elegant theoretical analysis of the use of different such
gain functions is given in [12]. The algorithm begins at the root, chooses the variable of highest gain to
put there, and then recurses on the nodes on each side. This process continues until all leaves are pure (all
positive or all negative).

Problem Setup 1. The decision tree targetsg(1) ; : : : g(m) and data setsS(1) ; : : : ; S(m) , each of at mostS
examples, satisfy the following conditions:

1. There exists an unknown setF of K metafeatures (K � N ) such that8j , g(j ) 2 DT(F ).
2. The targetg(j ) can be learned by running top-down decision-tree learning onS(j ) using a givenGain

function. In other words,always choosing to recursively split on the variable of highestGain based
onS(j ) producesg(j ) .

3. We are givens; d (d � N ) such thatg(j ) has at mosts internal nodes and depth at mostd. Then,
S = O (s logN ) examples are suf�cient to guarantee thatg(j ) has high accuracy over the underlying
distribution over data.

A straightforward lifelong learning approach would be as follows:IMPROVEREP simply adds to~F fea-
tures seen in tasks learned from scratch as metafeatures, andUSEREP examines only those (meta)features in
~F when learning a target. Since each metafeature inF can have at mosts distinct features, this learns at most
K targets from scratch and evaluates onlyKs features per example on the rest i.e.,O (S(KN + mKs ))
feature queries overall (see Appendix A for details). However, whens = 
 ( N ) this is no better than
learning all tasks individually from scratch. In this section, we will present a signi�cantly better protocol:

Theorem 1. The (USEREP Algorithm 2, IMPROVEREP Algorithm 3)-protocol for decision trees makes
O (S(KN + mKd )) feature evaluations overall and runs in timepoly(m; N; K; S; s; d ).2

This is a signi�cant improvement especially in the case of shallow bushy trees for whichd � s e.g.,
whend = O (log N ) but s = 
 ( N ). To achieve this improvement, we need a computationally ef�cient
approach that extracts bigger decision tree substructures from previous tasks and also knows how to learn
future tasks using such a representation. We �rst address the latter problem: we present anUSEREP

routine, Algorithm 2, that takes as input a set of hypothesized metafeatures~F and a training datasetS
consistent with an unknown treeg and either outputs a consistent tree~g or halts with failure. To appreciate
its guarantees, de�nePref(f ) to denote the set of all “pre�x” trees (prunings) of some incomplete treef .
For any set of hypothesized metafeatures~F , let Pref( ~F ) = f Pref( ~f ) j ~f 2 ~Fg. We show that Algorithm 2,
given ~F , can effectively learn a target that can be represented using not only~F , but also the exponentially
larger metafeature setPref( ~F ). That is, ourUSEREP algorithm can effectively learn trees from a much
larger spaceDT(Pref( ~F )) compared to justDT( ~F ).

We now describe Algorithm 2. Though we limit our discussion to Boolean feature values for simplicity,
we later extend it to real values. In Algorithm 2, we basically grow an incomplete decision tree~g one node at
a time, by picking one of its empty leaf nodesu, and either assigning a label tou or splittingu on a particular
feature. Before doing so, we �rst make sure that we have not failed already (Step 4). More speci�cally, ifu

1If featurei splits data setS into two setsL andR, its information gain of featurei is thenEnt (S) � [ j L j
j S j Ent (L )+ j R j

j S j Ent (R)].
Here,Ent is the binary entropy of the label proportions in the given set; that is, if ap fraction of the labels inS0 are positive, then
Ent (S0) = p log2(1=p) + (1 � p) log2(1=(1 � p)) .

2 It may seem that this result can be equivalently stated in terms of the average number of features examined per example i.e.,
O (KN + mKd ). However, such a performance metric is different from what we de�ned. Under certain independence conditions
it may be possible to learn a target simply by drawing a large number of examples and examining only a single feature per example
while still making many feature evaluations in total.
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is at a depth greater thand or if ~g already has more thans nodes, we halt with failure because we were not
able to �nd a small tree consistent with the data. If not, we proceed to examine samples from the training
set that have reachedu, which we will denote bySu . If all x 2 Su have the same label, we makeu a leaf
with that label and proceed to other nodes in~g.

Otherwise, we evaluate a small set of features onSu to compute theirGain and pick the best of those
features to be the variable atu (denoted byvar (u)). The way we pick this set of features atu, which we
will call I , is based on the following intuition. Assume we have grown~g identically tog so far and letu0be
the node ing that corresponds tou. Then the correct variable to be assigned atu is var (u0) which is in fact
the gain maximizing variable onSu (as assumed in the second point of Problem Setup 1). Thus, our goal is
to ensurevar (u0) 2 I .

If indeedg 2 DT(Pref( ~F )) , this variable must in fact correspond to the variable in some node in some
~f 2 ~F . In other words, we should be able to “superimpose” some~f over ~g with the root of ~f at eitheru
or one of its ancestors such that the variable in~f that has been superimposed overu is in fact the correct
variable foru. Additionally, the variables in~f should not con�ict with those that have already been assigned
to the ancestors ofu in ~g. Since we do not know which~f and which superimposition of~f induces the correct
variable atu, we add toI the variable induced atu by every possible superimposition: we pick every~f 2 ~F
and every nodew that is either an ancestor ofu or u itself, and then superimpose~f over ~g with its root
at w. We add toI the variable thus induced atu, provided the variables in~f do not con�ict with those in
the ancestors ofu. In Algorithm 2, we use helper routines,INDUCE(~g; w; u; ~f ) which outputs the induced
variable andCONFLICT(~g; w; u; ~f ) which outputs false if there is no con�ict (both these simple subroutines
are described for completeness in Appendix A and illustrated in Figure 2). Finally, since no variable should
repeat along any path down the root, we remove fromI any variable already assigned to an ancestor ofu.
Then, we assign the gain maximizing feature fromI to u.

Observe that, atu, in total over all~f we may examineO(j ~Fj d) features onSu . Therefore, for a particular
sample, considering all nodes along a path from the root, we may examineO(j ~Fj d2) features. However,
with a more rigorous analysis we prove a tighter bound:

Theorem 2. USEREP Algorithm 2 has the property that given~F and dataS, a) if the underlying target
g 2 DT(Pref( ~F )) , the algorithm outputsg and b) conversely, if the algorithm outputs~g without halting
on failure, then~g has depth at mostd, size at mosts and is consistent withS, c) the algorithm evaluates
O(j ~Fj + d) features per example.

Algorithm 2 USEREP - Learning a decision tree using metafeatures

1: Input: Metafeatures~F , samplesS consistent with unknowng, depth boundd, size bounds.
2: Initialize the tree~g to be an empty leaf node. LetZ be the set of empty leaf nodes in~g.
3: while 9 u 2 Z do
4: Halt with failure if a)u is at depth> d or b) the size of~g is > s .
5: Let Su be the examples that have reachedu.
6: if all x 2 Su have the same labell then
7: Makeu a leaf with the labell .
8: else
9: Let I be the set of features to be examined atu. Initialize I to be empty.

10: for each~f 2 ~F and each nodew in the path starting from the root of~g to u do
11: If CONFLICT(~g; w; u; ~f ) is false, addINDUCE(~g; w; u; ~f ) to I .
12: Remove fromI any variable assigned to an ancestor ofu.
13: Evaluate only the featuresI onSu . Assignvar (u)  arg maxi 2I Gain (Su ; i ).
14: Output~g.

7



Proof. (a) and (c) follow from Lemma 3 and Lemma 4 respectively, which we prove below. (b) follows
immediately from the algorithm, more speci�cally from Step 4 and 6. We need this guarantee so that when
the learner does not fail, its output is guaranteed to be correct.

Lemma 3. If g 2 DT(Pref( ~F )) , Algorithm 2 outputs~g = g.

Proof. We are given thatg 2 DT(Pref( ~F )) . We will show by induction that~g is always grown correctly
i.e., ~g 2 Pref(g). This is trivially true at the beginning. Consider the general case. Letu be the node in~g
that is chosen in Step 3 to be grown. By our induction hypothesis that~g is a pre�x of g, there existsu0 in g
that corresponds tou and furthermore,Su = Su0. Now to show thatu will be grown identical tou0, since
~g is only a pre�x, the size and depth constraints will be satis�ed and so we are guaranteed to not halt with
failure at this node. Next, ifu0 was a leaf node, sinceSu = Su0, we are guaranteed to labelu as a leaf and
assign it the correct label.

If u0 is not a leaf node, letvar (u0) be the variable present inu0 i.e., var (u0) =
arg maxi 2 [N ] Gain (Su0; i ). Therefore, to show that we assignvar (u0) to u in Step 13, we only need
to prove thatvar (u0) 2 I i.e., we consider this feature for examination. To prove this, note that ing,
var (u0) belongs to the pre�x of some metafeature~f � from ~F that is rooted either at somev0which is either
u0 itself or at one of its ancestors (becauseg 2 DT(Pref( ~F )) ). We can show that in Step 11, whenw = v
and ~f = ~f � , we end up addingvar (u0) to I . First, if v is the corresponding node in~g we will have that
CONFLICT(~g; v; u; ~f � ) is false. Furthermore, clearlyINDUCE(~g; v; u; ~f ) = var (u0). Now sinceg has no
variable repeating along any root-to-leaf path,var (u0) does not occur in any of the ancestor nodes ofu0, and
similarly in ~g, it does not occur in any of the ancestor nodes ofu. Thus, the conditions in Step 11 succeed,
following whichvar (u0) is added toI .

Lemma 4. Algorithm 2 makes at mostO(j ~Fj + d) feature queries per example.

Proof. First of all note that each example corresponds to a particular path in~g. Thus, the features examined
on that example as~g was grown, correspond to the different features computed fromINDUCE(~g; w; u; ~f ) for
different nodesv andu on that path. These feature queries can be classi�ed into two types depending on
whether A)w = u or B) w is an ancestor ofu. For type A, sincew = u, INDUCE(~g; w; u; ~f ) can only be
one of the �xed set of features that occur at the root of metafeatures in~F . In total this may account for at
mostj ~Fj feature examinations.

Now consider the type B features queries corresponding tow 6= u. Each feature examined in this case
corresponds to a 3-tuple(w; u; ~f ) wherew is an ancestor ofu. We claim that for a given~f , w has to be
unique in this path. This is becausevar (w) must equal the root variable of~f by de�nition of INDUCE, and
any given variable appears at most once on any path by Step 12.

Thus type B feature query effectively corresponds to a 2-tuple(u; ~f ) instead of a 3-tuple(w; u; ~f )
because~f corresponds to a uniquew. Let w ~f denote this unique node for~f . Now, let ku be the number
of type B feature queries made atu. We can divide this case further into type B(a) consisting of nodes
u, such thatku = 1 and type B(b) corresponding toku > 1. In total over thed nodes in~g, we would
examine onlyd type B(a) features. Now, for type B(b), at nodeu, where we evaluateku features atu, we
claim that this eliminates at leastku � 1 different metafeatures from resulting in feature examinations of
type B further down this path. This is because each of theku features that we examine atu correspond to
INDUCE(~g; w~f ; u; ~f ) for some~f 2 ~F . Let this set of metafeatures be~Fu , wherej ~Fu j = ku . Now, we assign

only one feature tou that corresponds to say,~f � 2 ~Fu . After this, when we are growing a descendant node
v, for theku � 1 other metafeatures~f 2 ~Fu and ~f 6= ~f � , CONFLICT(~g; w~f ; v; ~f ) will be true as there will

be a con�ict atu. However, sinceCONFLICT(~g; w~f ; v; ~f ) needs to be false in Step 11 for~f to result in a
feature query, we conclude that there areku � 1 different metafeatures that do not result in a feature query
beyond this point.
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Using the above claim, we can now bound
P

u:ku > 1 ku , which will account for the total feature queries
of type B(b) along the path. Sinceku � 1 denotes the number of eliminated metafeatures beyondu, and
since only at mostj ~Fj can be eliminated, we have

P
u:ku > 1(ku � 1) � j ~Fj . Now, since

P
u:ku > 1 1 � d, we

have that
P

u:ku > 1 ku � j ~Fj + d i.e., we make at mostj ~Fj + d type B(b) feature queries of the last kind on
this path. Thus, in summary, we examine at mostO(j ~Fj + d) features on each example.

Now, to provide a lifelong learning protocol for Problem Setup 1, the challenge is to design a computa-
tionally ef�cient IMPROVEREP routine3. To this end, we present Algorithm 3 that creates useful metafea-
tures by adding to~F well-chosen subtrees from target functions. In particular, after learning a targetg from
scratch, we identify a root-to-leaf path ing that we failed to learn using~F . We add to~F the subtrees rooted
at every node in that path. The intuition is that one of these subtrees makes the representation more useful.
To describe how the path is chosen, let~g be the incomplete tree learned using~F just before we halted with
failure. Since either the depth or the node count was exceeded in~g, there must be a path from the root of~g
longer than the corresponding path ing. We pick the corresponding path ing which was incorrectly learned
in ~g (see Figure 3).

Finally, as we see below in the proof sketch for Theorem 1, the resulting protocol evaluates onlyO (Kd )
features per example when learning from~F , besides learningK trees from scratch. Recall that this is a
signi�cant improvement of our straightforwardUSEREP which evaluatesO (Ks ) features per example. In
Appendix A, we present results for more models for decision trees.

Algorithm 3 IMPROVEREP - Decision Trees

1: Input: Old representation~Fold and a treeg 2 DT(F ) learned from scratch and the (incorrect) incomplete
tree~g learned using~Fold.

2: ~F  ~Fold

3: Identify a path from root of~g such that the corresponding path ing has fewer internal nodes.
4: For each node in the corresponding path ing, add the subtree rooted at that node to~F .
5: Output ~F

Proof. (for Theorem 1) We will show by induction that at any point during a run of the protocol, ifk
targets have been learned from scratch, then there exists a subset ofk true metafeaturesF 0 � F that have
been “learned” in the sense thatf 2 F 0 is the pre�x of some metafeature in~F , implying thatDT(F 0) �
DT(Pref( ~F )) . Then after learningK targets from scratch, it has to be the case thatF 0 = F after which
DT(F ) � DT(Pref( ~F )) and hence from Lemma 3 it follows that the protocol can never fail while learning
from ~F .

The base case is when~F 0 is empty for which the induction hypothesis is trivially true. Now, assume
at some point we have metafeatures~Fold and these correspond to true metafeaturesF 0

old � F such that
DT(F 0

old) � DT(Pref( ~F )) andjF 0
oldj = k. Now, from Theorem 2, we can conclude that any target that lies

in DT(F 0
old) will be successfully learned byUSEREP Algorithm 2. Hence, whenUSEREP does fail on a

new targetg, it means that theg contains metafeatures fromF � F 0
old. In fact, along any path ing in which

learning failed (that is, the tree~g that is output differs fromg on this path), there must be a node at which
some metafeature fromF � F 0

old is rooted. If this was not true for a particular failed path, we can show
using an argument similar to Lemma 3 that this path would have been learned correctly. Therefore, when

3As a warm-up, consider a semi-adversarial scenario where each element ofF has a reasonable chance of being the topmost
metafeature in any target. We can then learn the �rst few targets from scratch and simply add them to~F so that with high probability,
each metafeature fromF is guaranteed to be the pre�x of some element in~F . Then we can use Algorithm 2 to learn the remaining
targets using~F as all those targets will lie inDT(Pref( ~F )) . We provide a careful analysis of this simpler case in Appendix A
Theorem 17.
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Algorithm 4 IMPROVEREP - Decision Lists

1: Input : Old representation~Fold, targetg learned from scratch,~g learned using~Fold.
2: Let g = ( gp; gs) wheregp is the longest common pre�x of~g andg.
3: ~F  ~Fold [ f gsg
4: Return ~F

We now present an outline of our proof for the claim that employingUSEREP Algorithm 2 along with
IMPROVEREP Algorithm 4 learns at mostO

�
K 2

�
decision lists from scratch. A crucial fact we use is that

USEREP Algorithm 2 learns any list iff it belongs toDT(Pref( ~F )) . Now, observe that there must exist an
f 2 F such thatf is a part ofg and furthermore,USEREP was able to learn upto a pre�xf p of f after
which it failed to learn the remaining suf�x off , sayf s. Our result follows if we can show that there can
only beO(K ) failures ofUSEREP that correspond to a particularf in this manner. To prove this, we will
categorize the failures ofUSEREP corresponding tof based on whetherf p 2 DT(Pref( ~Fold)) and show
that there can be onlyO (K ) failures for each case, for a givenf .

Whenf p 2 DT(Pref( ~Fold)) , after runningUSEREP Algorithm 2, we will have thatf s 2 DT(Pref( ~F ))
becausegs which has the pre�xf s was added to our representation. Then,f 2 DT(Pref( ~Fold)) , and
therefore on any new target there can not be a failure corresponding tof . Thus, there is at most one failure
corresponding tof , of this type.

The case wheref p =2 DT(Pref( ~Fold)) requires a more intricate argument which is based on identifying
anotherf 0chosen carefully from an “indirect” representation ofg in terms ofF . In particular, on one hand
there is a direct representation ofg in terms ofF . At the same time, since Algorithm 2 learnedgp using
~Fold, gp can be represented as a sequence of pre�xes from~Fold. Since each element in~Fold is also from
DT(F ), we can indirectly represent this sequence of pre�xes in terms of parts of metafeatures fromF .
We will choose an appropriately positionedf 0 from this representation and show that there can be only
two failures corresponding to a particularf andf 0. Thus, there can only beO (K ) failures for a particularf .

Theorem 5. The (USEREP Algorithm 2, IMPROVEREP Algorithm 4)-protocol for decision lists makes
O

�
S(K 2N + m(K 2 + d))

�
feature evaluations overall and runs in timepoly(m; N; K; S; d ).

Proof. We show that the protocol learns at mostO
�
K 2

�
lists from scratch. Then, from Lemma 4 our result

follows.
Now, we need to understand how adding the suf�xgs from a targetg on whichUSEREP failed, makes

the representation more useful. As a warm up, we can show that when the protocol faces the same target
g in the future, the updated representation~F = ~Fold [ f gsg will be able to learn it. A crucial fact from
which this follows is thatUSEREP Algorithm 2 learns any list if and only if the list can be represented as a
concatenation of pre�xes of elements from~F . This fact holds because Lemma 3 and the way the algorithm
works. Thus, since we were able to learngp when we �rst sawg, gp is a concatenation of pre�xes from~Fold

i.e.,gp 2 DT(Pref( ~Fold)) . Then, sinceg = ( gp; gs) 2 DT(Pref( ~Fold [ f gsg)) , we can learng using ~F .
Of course, we should show that the updated representation is more powerful than just allowing us to

learn repeated tasks in the future. To see how, note that since the targetg is a concatenation of metafeatures
from F , its suf�x gs must begin with the suf�x of a metafeature fromF . More formally, sinceg 2 DT(F ),
gs must begin with a suf�xf s of an elementf 2 F . Let f p be the corresponding pre�x off . Now, consider
a future target that containsf . If the learner is able to identify all nodes in the target upto the end of pre�x
f p, the learner is also guaranteed to identifyf completely in the target. This tells us a little bit more about
the power of the updated representation.

Now, to prove our lemma, we use the fact that each failure ofUSEREP Algorithm 2 must correspond
to a speci�c elementf 2 F as seen above. That is, there must exist anf = ( f p; f s) 2 F such thatf � dl g
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and furthermore,USEREP was able to learn upto a pre�xf p of f after which it failed. We claim that there
can only beO(K ) failures ofUSEREP that corresponds to a particularf in this manner. From here, our
lemma immediately follows. To prove this claim, we will categorize the failures ofUSEREP corresponding
to f into two different cases and bound the number of failures in each case. Throughout the following
discussion, we will simply use the term failure to denote failure ofUSEREP.

We will divide failures corresponding tof based on whetherf p can be represented as a concatenation
of pre�xes from ~Fold or not. If it can be, we show that it is easy to argue that in any future target there will
not be a failure corresponding tof . If not, we present a more involved argument to show that there can be
at mostK failure events corresponding to a particularf . Then, the bound ofO

�
K 2

�
on the total number

of failures follows.

Case 1: For the �rst case we assume thatf p 2 DT(Pref( ~Fold)) . Then, clearly, this is true for the
new representation~F i.e., f p 2 DT(Pref( ~F )) . Furthermore, since there is a new elementgs with f s as
its pre�x, f s 2 Pref( ~F ). This implies thatf 2 DT(Pref( ~F )) . This means that we can henceforth learn
an occurrence off in a new target if learning has been successful until the beginning off in that target.
In other words, there can never be another failure that corresponds tof . This case can hence occur only once.

Case 2: The second case corresponds tof p =2 DT(Pref( ~Fold)) . We will now subdivide this case further
based on another metafeaturef 0 2 F , a part of which lies in some hypothesized metafeature in~Fold and was
used to learn/match a part off in gp. We will �x f 0 and argue that there can be at most two failure events
characterized byf andf 0during the lifelong learning protocol. Since there are onlyK differentf 0, then for
a �xed f , there can only be2K failure events of this type, thus completing our proof.

We begin by informally explaining how we choosef 0 to classify a given failure event. We �rst note
that there are two ways in whichgp can be represented in terms of the true metafeaturesF . The “direct”
representation corresponds to the fact thatg 2 DT(F ). On the other hand, there is also an “indirect”
representation: since Algorithm 2 could learn the pre�xgp using ~Fold, gp can be represented as a sequence
of pre�xes from ~Fold. Since each element in~Fold is a part of older targets fromDT(F ), we can represent
this sequence of pre�xes in terms of parts of true metafeatures (that are not necessarily pre�x/suf�x parts).

Now, let the root variable off be i f . There must be a unique element in the sequence of pre�xes that
containsi f . We letf 0 be the metafeature inF that contributes to the last bit of this unique element in the
above-described indirect representation. Before we proceed to describe this more formally, we note that
this is all possible only becausei f indeed belongs tof p. If it did not, it meansf p is an empty string, which
we have dealt with in Case 1.

We now state our choice off 0 more formally. Since we were able to learngp using ~Fold we can write
gp = ( Pref?( ~f l1 ); Pref?( ~f l2 ); : : :) for ~f l1 ; ~f l2 ; : : : 2 ~Fold where we use the notationPref?( ~f ) to denote a
particular pre�x of ~f . Let Pref?( ~f l r ) be the unique element in the above sequence that containsi f (we use
the indexr to denote that it contains the root). Like we stated before, since~f l r is also the suf�x of some
old target inDT(F ), ~f l r must be made up of parts of true metafeaturesF . The same holds forPref?( ~f l r )
too. We will focus on the true metafeature that makes up the last bit ofPref?( ~f l r ). That is, letf 0 2 F
be the metafeature that occurs in an older target, such that a non-empty suf�x ofPref?( ~f l r ) comes fromf 0

i.e., there exists suf�xSuff?(Pref?( ~f l r )) such thatSuff?(Pref?( ~f l r )) � dl f 0. Here, againSuff?( ~f ) is used
to denote a particular suf�x of~f . Thus each failure event in this case can be characterized by a particularf
andf 0.

Note thatSuff?(Pref?( ~f l r )) need not necessarily be a suf�x off 0because~f l r may have stopped matching
with g somewhere in the middle off 0. It need not necessarily be a pre�x off 0 either because~f l r is only a
suf�x of some target inDT(F ) and this suf�x may have begun somewhere in the middle off 0 in that target.

To show that there are at most two failure events for a givenf andf 0, we will consider two sub-cases

12







similar argument. The only difference is that nowSuff?(Pref?( ~f l r )) is not necessarily a pre�x off 0 and
therefore,i f 0 is not necessarily present inSuff?(Pref?( ~f l r )) (see Figure 5. However it is guaranteed that
a suf�x of f 0 containingi f is present in~f l r . Now let Suff??(Pref?(f l r )) be an alternative shorter suf�x of
Pref?(f l r ) that begins only ati f .

Now, consider a new target with a similar failure with a similarSuff0??(Pref0?(f l0
r 0

)) that begins withi f .
We will again show how we can use the updated representation to represent a larger pre�x ofg0, speci�cally
a pre�x that extends until the end off in g0. In particular, we make use of the fact that the algorithm was able
to learn at least beforei f in this target, beyond which we can learnf p the way we did in the previous target,
and then appendf s from the representation. More speci�cally, we �rst extend/shorten the pre�xPref0?(f l0

r 0
)

that is used to match withg0
p to another pre�xPref00

?(f l0
r 0

) that it has the suf�xSuff??(Pref?(f l r )) (which is

only possible becausei f 2dl Pref00
?(f l0

r 0
)). On doing this, we can represent the rest off using ~F like in the

previous case.
Thus, we take the sequence(Pref0?( ~f l01

); Pref0?( ~f l02
); : : :) 1) we retain the �rstr 0� 1 elements, 2) modify

ther 0th element, 3) append ther th, r +1 th, : : : elements from the representation forgp, 4) and �nally append
f s. This represents a larger pre�x ofg that includesf completely, using only pre�xes from~F . Namely, this
is (Pref0?( ~f l01

); Pref0?( ~f l02
); : : : Pref00

?( ~f l0
r 0

); Pref?( ~f l r +1 ); Pref?( ~f l r +2 ); : : : ; f s). This contradicts the fact that
we failed to learnf completely ing0.

4 Monomials

We consider lifelong learning of degree-d monomials under the belief that there exists a set ofK mono-
mial metafeatures likef x1x2; x2

1x3; : : :g and each target can be expressed as a product of powers of these
metafeatures e.g.,(x1x2)2(x2

1x3). This is similar to the lifelong Boolean monomial learning discussed in
[5] where each monomial is a conjunction of monomial metafeatures. Since that is an NP-hard problem,
they assume that the metafeatures have so-called “anchor” variables unique to each. We will however not
need this assumption.

Formally, for any inputx = ( x1; x2; : : : xN ) 2 RN , we denote the output of ad-degree target monomial
g = ( g1; g2; : : : ; gN ) by the functionPg(x) = xg1

1 xg2
2 : : : xgN

N wheregi 2 N[f 0g and the degree
P

i gi � d.
The unknown metafeature setF = f f1; f2; : : : fK g consists ofK monomials. To simplify notations, we also
considerF to be a matrix where columni is f i . Therefore, ifg can be expressed usingF , theng lies in the
column space ofF denoted byC(F ). Then, our problem setup is as follows:

Problem Setup 2.Them d-degree targetsg(1) ; : : : g(m) and the training data (each of at mostS examples)
drawn from unknown distributionsD (1) ; : : : ; D (2) satisfy the following conditions:

1. There exists an unknownN � K matrixF (K � N ) such thatg(j ) 2 C(F ).
2. EachD (j ) is a product distribution (as assumed in [5, 2]) that is not too concentrated (explained in

Appendix B).

Unlike the decision tree problem, where we only considered an abstraction of the learning routine, here
we present a particular technique for learning a monomial exactly. We show that under product distributions
that are not too concentrated, it is possible toexactlylearn the power of a given feature in a target by exam-
ining only thatfeature on polynomially many samples (Lemma 22 in Appendix B). Naturally, we can learn
the monomial exactly from scratch as presented in Algorithm 15 in Appendix B from only polynomially
many samples. Then, in the lifelong learning model, by merely keeping a record of the features that have
been seen so far, it is fairly straightforward to learn onlyK targets from scratch while learning the rest by
examiningO (Kd ) features per example (Theorem 24).
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Algorithm 6 USEREP - Learning a Monomial from Metafeatures

1: Input: Metafeatures~F = [ ~f1; : : : ; ~fk ] (k � K ), sample setS of sizeS.
2: Halt with failure if ~F is empty.
3: Let I be the indices of those rows in~F that are linearly independent and let~F [I ] be the corresponding

k � k sub-matrix of ~F .
4: Examine featuresI on all samples and use Lemma 22 to learn and round off estimates~gi for eachi 2 I .

5: Solve forw ~F [I ](g[I ]) in ~F [I ]w ~F [I ](g[I ]) = g[I ]. If no solution exists, halt with failure.

6: Estimate~g  ~F w ~F [I ](g[I ]).
7: Halt with failure if the degree of~g is greater thand.
8: Draw a single sample(x; Pg(x)) , examine the features relevant to~g. If Pg(x) 6= P~g(x), halt with

failure.
9: Return~g.

probability 1 � O (� ). Also, since ~F has at mostK columns, from Lemma 7 we have that each time we
learn using the representation, we examineK features per example. Besides, we examined features that are
relevant tog in Step 8.

Lemma 7. Let ~F be anN � k matrix. Then, with high probability1 � O
� �

m

�
, a) if g 2 C( ~F ), then

Algorithm 6 correctly learns and outputs~g = g b) if Algorithm 6 does output some~g, then ~g = g, c)
Algorithm 6 examines only at mostk features per sample point and at mostd features on a single sample.

Proof. a. Given that ~F is of rank k, then if g 2 C( ~F ), there exists a unique solution forw ~F (g) in
~F w ~F (g) = g. Note that this is a system ofN linear equations ink. Therefore, if the Algorithm picked
any set ofk linearly independent rowsI = f i 1; i 2; : : : i kg from ~F , there must exist a unique solution to
~F [I ]w ~F [I ](g[I ]) = g[I ] where the solution isw ~F [I ](g[I ]) = w ~F (g). Thus, solving this system will give

us the value ofw ~F (g) from which we can computeg correctly using ~F w ~F (g) = g. This however re-
quires that we determine the values ofgi 1 ; gi 2 ; : : : ; gi k from scratch, which we can do accurately with high
probability of1 � O

� �
m

�
from Lemma 22 (from Appendix B) using polynomially many samples.

b. To prove our second claim, observe that the only event in which the learner may potentially have an
incorrect output is wheng =2 C( ~F ) but we still do learn aw ~F [I ] because it so happens thatg[I ] 2 C( ~F [I ]).

However, ~g = ~F w ~F [I ](g[I ]) 6= g. If ~g has a degree greater thand, the algorithm halts with failure.
Otherwise, we can show using Lemma 25 (see Appendix B) that by drawing a single sample and checking
whetherP~g(x) = Pg(x) we can conclude whetherg = ~g.

c. This follows directly from the design of the algorithm: we examine onlyK features on all samples,
and then on a single new sample we examine features relevant to~g provided~g has degree at mostd.

4.1 Polynomials

In this section, we study lifelong learning of real-valued polynomial targets each of which is a sum of at most
t degree-d monomials. Similar to the Boolean model in [5], our belief is that there exists a set of monomial
metafeatures such that each monomial in the polynomial can be expressed as a product of these metafeatures
like we described in the previous section. As an example, givenF = f x1x2; x2

1x3; : : :g, one possible target
is 3(x1x2)(x2

1x3) � 5(x1x2)2(x2
1x3). Again, we assume that eachD (j ) is a product distribution overRN .

Since polynomial learning is a hard problem, we will have to make a strong assumption that eachD (j )

is known, which then enables us to adopt the polynomial learning technique from [2]. Note that we can
relax this assumption when all the distributions are common (like it is assumed in [5]), so that the common

17



distribution can �rst be learned usingO (poly(N )) feature evaluations on unlabeled examples. However,
if the distributions were all different, learning them may needO (poly(mN )) feature evaluations, which
would be feature-inef�cient.

Formally, for any inputx 2 RN , we denote the output of at-sparsed-degree target polynomialG =
f (g1; ag1 ); (g2; ag2 ); : : :g (jGj � t) by the functionPG(x) =

P
(g;ag )2G agPg(x) where for each(g; ag) 2

G, g is a monomial of degreed and co-ef�cientag 2 R. Our belief is that there exists a set of monomial
metafeaturesF , and each polynomial can be represented as a sum of monomials, each of which can be
represented usingF as described in Section 4. More formally, a polynomialG can be represented usingF
if for each(g; ag) 2 G, g 2 C(F ). More compactly,G(j ) � C(F ) � R. Then, our problem setup is as
follows.

Problem Setup 3(Lifelong polynomial learning). Them d-degreet-sparse targetsG(j ) and dataS(j )

(each of at mostS examples) satisfy the following conditions:
1. There exists an unknownN � K matrixF (K � N ) such that eachG(j ) 2 C(F ) � R.
2. The samples inS(j ) are drawn i.i.d from aknownproduct distributionD (j ) 5.

4.1.1 Learning a polynomial from scratch

We now brie�y discuss the algorithm in [2] for learning a polynomial from scratch from a known distribu-
tion. The basic idea is to use correlations between the target and some cleverly chosen functions to detect the
presence of different monomials inG. For the sake of convenience, assume there exist correlation oracles
that when provided as input some functionP0, return the exact value of the correlationshP0(x); PG(x)i ,
hP0(x); P2

G(x)i etc., In practice these oracles can be replaced by approximate estimates based on the sam-
ple S. We will limit our analysis to the exact scenario noting that it can be extended to the sample-based
approach in a manner similar to [2]. Our guarantees will then hold good with high probability, given suf�-
ciently many samples.

To simplify the discussion we will assume like in [2] that the distribution over each variable is identical
i.e.,D = � N . Then, as a �rst step, givenD, the learner creates an inventory of polynomials in each variable
x i such that these polynomials represent an “orthornormal bases” with respect toD. More formally, the
inventory will consist of polynomialsHd0(x i ) of degreed0(identical for eachi 2 [N ]) for each0 � d0 � d,
such thatE[Hd0(x i )Hd00(x i )] is zero whend0 6= d00and is one whend0 = d00.

Equipped with this machinery, we then set out to performt iterations extracting one monomial fromG
at a time. Assume that from the iterations performed so far, we have extracted a set of monomials and their
coef�cients ~G � G . Now, for the next iteration, we �rst �nd the largest power ofx1 that is present inG � ~G
by testing whetherhH2d0(x1); (PG � P~G)2i > 0 for d0 = d; d � 1; : : : in that order. These tests detect the

presence ofxd
1, xd� 1

1 ; : : : respectively. We stop when the test is positive for somexd1
1 . The curious reader

can refer [2] to understand why this particular test works, but all we need to know for our discussion is that
if these tests are done in this particular order, we are guaranteed to �nd the highest power ofxd1

1 in G � ~G.
Then, we �nd the largest power ofx2 that “co-occurs” withxd1

1 in some monomial, by testing whether
hH2d1 (x1)H2d0(x2); (PG � P~G)2i > 0 for d0 = d; d � 1; : : : to detect the presence ofxd1

1 xd
2; xd1

1 xd� 1
2 ; : : :

and so on in that particular order. In this manner, the algorithm builds a monomial overN sub-iterations
which turns out to be thelexicographically largestg present inG � ~G. Now, to compute the co-ef�cient
ag we �nd h

Q N
i =1 (bgi Hgi (x i )) ; PGi wherebgi is the co-ef�cient ofxgi

i in Hgi (x i ). The algorithm then adds
(ag ; g) to ~Gbefore proceeding to the next oft iterations.

The above summary differs from that original algorithm presented in [2] in the precise quantity that it
extracts in each iteration. [2] consider a representation of the polynomial in the orthornormal bases such
that it is a weighted sum of terms of the formHd1 (x1)Hd2 (x2) : : : HdN (xN ), and in each iteration they

5This is the model considered in [2]. An upper bound onS can be found in [2].
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extract one such term. We however use the representation in the orthonormal bases only to detect the
lexicographically largest monomial and its corresponding co-ef�cient and then remove the monomial itself.

4.1.2 Lifelong Polynomial Learning

As a baseline in the lifelong learning model, we can learn the targets by makingO (S(KN + mKd )) feature
evaluations by simply remembering what features have been seen so far (Theorem 26 in Appendix B.3).
Below, we present an approach that makes onlyO (S(KN + m(K + td))) feature evaluations. This is an
improvement for sparse polynomialst < K e.g., whent = O (1).

The high level idea is to maintain a metafeature set of “linearly independent monomials” picked from
previously seen targets, like we did in the previous section. When learning a target using~F , we perform
t iterations to extract the monomials, but now in each iteration we �nd the lexicographically largest power
restricted to at mostK features. TheseK features, sayI , correspond to linearly independent rows in
~F . Given the powers of these features, sayg[I ], we can determine powers of all the features using the
representation like we did in the case of monomials. Then, as before, we extractg from the polynomial and
proceed to the next iteration. Aftert iterations, our estimate of the polynomial is complete, so we draw a
single example to verify it. If our veri�cation fails, we learn the polynomial from scratch and update the
representation with more linearly independent monomials from the learned polynomial.

Note that the restricted lexicographic search examines only a �xed set ofK features per example. Be-
sides this, in each of thet iterations, we evaluated features relevant to the extracted monomial, accounting
for K + td feature evaluations per example.

Algorithm 7 IMPROVEREP - Polynomials

1: Input: Representation~Fold and a targetG learned from scratch.
2: ~F  ~Fold

3: for g 2 G do
4: If g =2 C( ~F ), addg as a column to~F .
5: Return ~F

Theorem 8. The (USEREP Algorithm 8, IMPROVEREP Algorithm 7)-protocol for polynomials makes
O (S(KN + m(K + dt))) feature evaluations overall and runs in timepoly(m; N; K; S; t ).

Proof. Below in Lemma 9, we show that we increase the rank of~F by at least one every time we fail to
learn using~F on some target. IfUSEREP has failed on more thanK targets it means that there are at least
K + 1 monomials fromC(F ) that were added as columns to~F and are linearly independent. However,
sinceC(F ) is aK -dimensional subspace inRN , this results in a contradiction, thus proving that at mostK
failures ofUSEREP can occur. The result then follows from Lemma 9 and the fact thatj ~Fj contains only at
mostK targets.

Lemma 9. Let ~F be anN � k matrix. Then, a) ifG(j ) 2 C( ~F ), then Algorithm 8 correctly learns and
outputs~G(j ) = G(j ) b) if Algorithm 8 does output some~G(j ) , then ~G(j ) = G(j ) . Also, Algorithm 8 examines
only at mostk + td features per sample point.

Proof. a. AssumeG(j ) 2 C( ~F ). The fact that in each iteration, we �nd the lexicographically largest value
for the featuresI follows directly from the discussion in [2]. However, we do have to prove that there is a
uniqueg in Gsuch thatg[I ] corresponds to the above value. This follows from the proof of Lemma 7 where
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Algorithm 8 USEREP - Learning Polynomial from Metafeatures

1: Input: Metafeatures~F = [ ~f1; : : : ; ~fk ] (k � K ), distributionD
2: Halt with failure if ~F is empty.
3: Let I be the indices of those rows in~F that are linearly independent and let~F [I ] be the corresponding

k � k sub-matrix of ~F .
4: Query for only the featuresI on all samples.
5: Initialize ~Gto be empty.
6: for t iterationsdo
7: Let g be the lexicographically largest monomial inG � ~G with respect toI . Find g[I ] using the

lexicographic search technique from [2] using the correlation oracle (in practice, estimate this using
theS).

8: Solve forw ~F [I ](g[I ]) in ~F [I ]w ~F [I ](g[I ]) = g[I ]. If no solution exists, halt with failure.

9: Estimate~g  ~F w ~F [I ](g[I ]).
10: Halt with failure if the degree of~g is greater thand.
11: a~g  h

Q N
i =1 (bgi Hgi (x i )) ; (PG � P~G)i

12: ~G  ~G [ f ~gg
13: Draw a single sample(x; PG(x)) fromD, query thetd features that are relevant to~G. If PG(x) 6= P~G(x),

halt with failure.
14: Return ~G.

we showed that forI corresponding to linearly independent rows,w ~F [I ](g[I ]) = w ~F (g) and hence given

w ~F [I ](g[I ]) there is a uniqueg 2 C(F ) de�ned byg = ~F w ~F [I ](g[I ]).
Now, we need to prove that we �nd a co-ef�cienta~g for the to-be-extracted monomial, that satis�es

a~g = ag . We �rst note thath
Q N

i =1 Hgi (x i ); (PG� P~G)i returns the co-ef�cient of
Q N

i =1 Hgi (x i ) in (PG� P~G),
saya0

g , in the basis representation of the polynomial. Next, we claim that the co-ef�cienta0
g in the bases

representation is contributed to purely by the co-ef�cientag in the monomial representation. If there was
any other monomial that contributed toa0

g , then it had to have a lexicographically larger value thang with
respect toI or equal tog with respect toI . However, this contradicts the fact thatg was chosen to be the
unique lexicographically largest value with respect toI . Thus, we only need to account for the contribution
of the co-ef�cient of

Q N
i =1 Hgi (x i ) with an extra factor ofbgi which corresponds to the co-ef�cient ofxgi

i
within Hgi (x i ).

b. This follows from the proof of Lemma 7 and Lemma 25 applied to polynomials.
c. First of all, we examinek features when we queryI on all samples. Now, note that when we execute

the algorithm using samples for the correlation oracles, we will have to computeP~G(x) on each samplex.
This however will only require evaluation of features relevant to~G. SinceGconsists of at mostt monomials
each of degree at mostd, this can be only as large astd.

Sample-based estimation: We note that when we replace the oracles by estimation using random samples,
we should be careful about approximation errors that may affect the lifelong learning protocol. For example,
if we were to infer that a monomial term exists inG, when in reality it does not, we may incorrectly add it to
our representation~F when it should not be. However, if the co-ef�cients of each term in the polynomial were
not too small, we can overcome this problem by learning the co-ef�cient of the monomial, and checking
whether it is above a small threshold, before deducing that it indeed is a term in the polynomial.

20



5 The Agnostic Case

We propose a novel agnostic lifelong learning model where the learner facesm + r learning tasks of which
m tasks are guaranteed to be related through theK metafeatures inF while the otherr tasks are arbitrary.
Note that this is different from the conventional sense of agnostic learning where each individual task may
involve model misspeci�cation or noisy labels. What makes this challenging is that ther “bad” targets
can be chosen and placed adversarially in the stream of tasks. Since in the worst case there is no hope of
minimizing feature evaluations done on the bad targets, we adopt the natural goal of reducing the feature
evaluations on the training data of them good targets.

Problem Setup 4. In the agnostic model, the learner is faced with a series ofm + r targets such that:

1. m (good) targets are guaranteed to be related to each other through a set of at mostK metafeatures,
while the remainingr (bad) targets can be adversarially chosen and placed.

2. the learner has to reduce the feature evaluations done on the samples for them related targets.

We focus our discussion on learning decision trees with depthd = O (1) noting that it is straightforward
to extend it to learning more general decision trees and to other targets. In fact, in the following discussion,
it may be helpful to imagine the targets to be decision stumps over just one feature and the metafeature set
~F to simply be a set ofK features. Now, recall that in the original setup,~F consisted ofO (K ) useful
metafeatures from at mostK targets that were learned from scratchUSEREP failed to learn them. A
problem that arises now is that~F may have been updated with metafeatures from bad targets. Then, even
if ~F containedK metafeatures, we cannot guarantee that future good targets can be learned using~F . What
should we do then?

To address this, we present two simple computationally-ef�cient solutions below that highlight an
interesting trade-off between the number of targets learned from scratch and the number of features
evaluated on the remaining targets. In ther -expansiontechnique, we allow the learner to update~F on
every failure ofUSEREP allowing the representation to get as large as it can. In ther -restarttechnique, we
restrict the size of the representation but however, whenever the representation is “bad”, we erase and start
learning the representation all over again.

r -expansion technique Observe that sincem targets belong toDT(F ), there exists a representation
of at mostO (K + r ) metafeatures that is suf�cient to describe all them + r targets: a representation that is
the union of ~F and ther bad targets as they are. Thus, we allow the lifelong learner to update~F whenever
its USEREP fails, which would result in a representation of at mostO (K + r ) metafeatures.USEREP

will fail on at mostK good targets (and possibly on all ther bad targets which we do not care about) and
learn the rest successfully evaluatingO (K + r ) features per example. Note that this protocol is essentially
identical to the original protocol in Algorithm 1.

r -restart technique Alternatively, we enforcej ~Fj � K as before but whenUSEREP fails on a
K + 1 th target, we learn that target from scratch after which we simply erase~F and effectively restart our
lifelong learning from the next task. Every timeUSEREP fails on aK + 1 th target after the most recent
restart, we restart similarly. This technique learns more targets from scratch,O (rK ) targets in particular,
but evaluates onlyO (K ) features per example on the remaining targets. The protocol is described more
formally in Algorithm 9.
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Algorithm 9 r -restart based(A UR; A IR)-protocol for agnostic lifelong learning in the model of Problem
Setup 4

1: Input : A sequence ofm + r training setsS(1) ; S(2) ; : : : ; corresponding to targetsg(1) ; g(2) ; : : :, m of
which can be represented using an unknown setF of K metafeatures.

2: Let ~F be our current learned representation. Initialize~F to be empty.
3: for j = 1 ; 2; : : : m + r do
4: Using ~F andS(j ) , attempt to cheaply learng(j ) with USEREP algorithmA UR.
5: if learning was not successfulthen
6: Extract all features inS(j ) and learng(j ) from scratch.
7: If j ~Fj = K , assign an empty representation to~F .
8: Provide ~F andg(j ) as input toIMPROVEREP algorithmA IR to update~F .

When r = O
�
max

� m
N ; KN

m ; K
��

, it is easy to see that one of these two techniques makes only
O (S(KN + mK )) feature evaluations, which is as good as the performance whenr = 0 . To deal with
larger values ofr , we describe a combined technique that deals with the trade off carefully and does better
than both the above:

Theorem 10. In the agnostic model where we facem + r decision tree targets such thatm trees belong to
DT(F ), the number of feature evaluations on the training data for them trees:

� ther -expansion technique isO (S(KN + m(K + r ))) .
� ther -restart technique isO (S(rKN + mK )) .
� a combination ofc-expansion andr=c-restart isO(S(

p
rKNm + Km )) , for c =

p
rKN=m pro-

videdr = 
 (max ( m=n; KN=m; K )) .

Proof. In r -expansion, we allow~F to have as many asO (K + r ) metafeatures. Now, every bad target may
result in addingO (1) metafeatures to~F while them bad targets will result in addingO (K ) metafeatures
to ~F . Thus, we will be able to learn all butm good targets using~F by examining onlyO (K + r ) features
per example i.e.,O (S(rKN + mK )) features overall.

In r -restart, every timeUSEREP fails on aK + 1 th target, we learn that target from scratch and then
erase~F effectively restarting our lifelong learning. Now, at least one of theK +1 trees learned from scratch
must be a bad target. This is because if none of theK trees that were used to update~F were bad,~F would
have been rich enough to represent all the good targets. This means that theK + 1 th target has to be a bad
target. Thus, every restart corresponds to a failure ofUSEREP on at least one bad target and at mostK
good targets. Then, we will face at mostr such restarts, learning at mostrK targets from scratch during the
process and the rest from onlyO (K ) features per example i.e.,O (S(KN + m(K + r ))) features overall.

Now whenr = O
�
max

� KN
m ; K

��
observe thatr -expansion makes onlyO (S(KN + mK )) feature

evaluations. Similarly, whenr = O
� m

N

�
, r -restart makesO (S(KN + mK )) feature evaluations. This is

as good as our performance whenr = 0 .
To deal withr = 


�
max

� m
N ; KN

m ; K
��

, we can combine the above techniques, in particular, we com-
bine r

c-restart withc-expansion. That is, between every restart we allow~F to accommodateO (K + c)
metafeatures and whenUSEREP fails on theK + c + 1 th target we restart the representation. Recall that
each bad target may contributeO (1) metafeatures while all the good targets contribute toO (K ) metafea-
tures. Thus, between every restartUSEREP would have failed on at mostK good targets and at least
c + 1 bad targets. Since there are onlyr bad targets, we then face onlyO

� r
c

�
restarts. Since we learn only

O
� r

c

�
� K targets from scratch and learn the rest by examining onlyO (K + c) features per example, we

evaluateO
�
S( r

cKN + m(K + c)
�
) features overall.

The value of c that optimizes the above bound isc� =
q

rKN
m and the minimum is

O
�

S(
p

rKNm + mK )
�

. But note thatc� must take a meaningful value for this bound to hold good.
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That is, forc-expansion to make sense, we needc� � 1 and for r
c� -restart to make sense,r

c� � 1. That is,
we needc� 2 [1; r ], which can be veri�ed to hold good whenr = 


�
max

� m
N ; KN

m ; K
��

.

6 Lower bounds

We prove lower bounds on the performance of any lifelong learner under different ranges ofr in the agnostic
model. In particular, we prove tight lower bounds for suf�ciently small and large values ofr , ignoring other
problem-speci�c parameters and the sample size parameterS (that scaled only logarithmically withN for
most of our target classes). An interesting insight here is that whenr is too large, we prove that no learner is
guaranteed to succeed by makingO (mN ) feature queries, which means that lifelong learning is no longer
meaningful for really large values ofr .

Our main idea is a randomized adversary that poses decision stumps (trees with only the root node)
or degree-1 monomials to the learner. In particular, we use Lemma 12 where we show that when the
adversary picks one feature at random from a pool ofN 0 features to be the decision stump/monomial, if
the learner examines onlyo(N 0) features, the learner will fail to identify the correct feature for the target
with probability 
 (1) . Thus, for the learner to successfully complete the task, it must examine
 ( N 0)
features. Then to force a learner to examineO (KN + mK ) features, the adversary picksK distinct features
at random from the pool ofN features for the �rstK targets. Then it assigns theseK features as the
metafeatures and picks the remaining targets at random from this chosen set ofK features.

Theorem 11. Let rmin = max
� m

N ; KN
m ; K

�
, rmax = min

�
mN
K ; (N � K )2m

KN

�
. In the agnostic model of

Section 5, there exists an adversary such that, on them good trees, any lifelong learner makes:

� 
 ( NK + Km ) feature evaluations when0 � r � rmin .

� 

�

max
�

r
N � K ; 1

�
KN + Km

�
feature evaluations whenrmin � r � rmax .

� 
 ( mN ) feature evaluations whenrmax � r .

Proof. In Lemma 12 we design our randomized adversary. We prove Theorem 11 in the following three
lemmas one for each range ofr . First in Lemma 13 we prove a lower bound of
 ( KN + mK ) that holds
for any value ofr . Then in Lemma 14 we prove a lower bound for intermediate values ofr and �nally in
Lemma 15, we prove a lower bound for large values ofr .

Lemma 12. (Randomized adversary)For a particular task, if the adversary picks a feature from a pool
of N 0 features (N 0 � N ) to pose a single-feature target6, if the learner examines onlyo(N 0) features, the
learner will fail (i.e., pick the wrong feature) with probability
 (1) .

Proof. Let i � be the feature chosen by the adversary at random from a pool ofN 0 featuresI � , andI be the
set of features examined by the learner. The random choice ofi � corresponds to different possible outcome
events. But observe that from the perspective of the learner the events corresponding toi � =2 I (the adversary
picking a feature not examined by the learner) are all indistinguishable. This crucial observation tells us that
in all such events, the learner will adopt the same strategy. LetP r l (i ) denote the probability that the learner
outputs featurei in this strategy. LetP ra(i ) denote the probability that the adversary chose featurei at
random from its pool ofN 0 features.

Then, the probability that the learner fails is at least the sum of probability of the event that the adversary
picks ani from I � �I and the learner does not picki . We lower bound this probability

P
i 2I � �I Pra(i )(1 �

P r l (i )) as follows:

6It does not matter if the learner knows theseN 0 features or not.

23



X

i 2I � �I

Pra(i )
| {z }

1
N 0

(1 � P r l (i )) =
1

N 0

X

i 2I � �I

(1 � P r l (i )) �
1

N 0

 

jI � � I j �
X

i 2I � �I

Pr l (i )

!

�
1

N 0

�
N 0� o(N ) � 1

�
= 
 (1)

The second inequality follows from the fact that
P

i 2I � �I Pr l (i ) � 1 and the number of examined features
jIj = O (N 0).

Lemma 13. There exists an adversary such that any lifelong learning algorithm makes
 ( KN + mK )
feature evaluations.

Proof. For the �rst K single-feature targets, our adversary randomly picksK distinct features which will
be the metafeatures. Each of the remainingm � K tasks are targets that correspond to one of theseK
chosen features at random. Now note that for a taskj wherej � K , the adversary effectively picks a feature
at random from a pool ofN � j + 1 features (which excludes thej � 1 features already chosen). Thus,
the learner has to examine
 ( N � j + 1) features in order to not fail in this task with probability
 (1) .

Thus, over the �rstK tasks, the learner has to examineO
� P K

j =1 N � j + 1
�

= 
 ( KN ) features over

all. Then, in each of the followingm � K tasks, the learner has to examine
 ( K ) features per task i.e.,

 (( m � K )K ) features overall, which is
 ( mK ) sincem is large.

Now we prove a better bound for values ofr greater thanrmin = max
� m

N ; KN
m ; K

�
but less than

rmax = min
�

mN
K ; (N � K )2m

KN

�
. Here, instead of precisely choosingm good targets andr targets, the

adversary will pose a set of targets and then chooseK features to be the metafeatures. We then show that
� ( m) of the targets are good targets and� ( r ) targets are bad targets that correspond to the remaining
N � K features.

Lemma 14. (Lower bound for intermediate values ofr ) Whenr � rmax , there exists an adversary such

that any lifelong learning algorithm makes

�

max
�

r
N � K ; 1

�
KN + Km

�
feature evaluations.

Proof. When r
N � K � 1, the lower bound of
 ( KN + Km ) follows from Lemma 13. Hence, consider

r
N � K > 1. Let m0 = rN

(N � K ) . The adversary �rst presentsm0single-feature targets picked at random from
the pool of allN features. Then the adversary choosesK random features to be the metafeatures, hence
marking targets corresponding to theseK features as good targets, and the rest as bad.

Now, we can show that there are in fact� ( m) good targets and� ( r ) bad targets, thus ensuring that
this is a legal sequence of adversarial targets. Sincem0 = r

N � K N � N , using Chernoff bounds, with high

probability1� O(1), we have�
�
m0N � K

N

�
= � ( r ) bad targets and�

�
m0K

N

�
= �

�
rK

(N � K )

�
good targets.

Since,r � (N � K )2m
KN , this translates to�

�
(N � K )m

N

�
= O (m) good targets. Thus, this is a valid sequence

of targets.

Now, from Lemma 12, we get that the learner has to evaluate

�

rK
(N � K ) � N

�
features overall. In addi-

tion to this, the adversary presents a sequence ofm good targets chosen at random from theK metafeatures.
Note that this is legal because we still pose only�m good targets. This accounts for
 ( mK ) more feature
evaluations.

In total, the learner examines

�

rK
(N � K ) � N + mK

�
features.
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We �nally show that for suf�ciently larger i.e., r � rmax andr � rmin , the learner has to evaluate

 ( mN ) features.

Theorem 15. (For large r ) Givenr � rmax andr � rmin , there exists an adversary such that any lifelong
learning algorithm makes
 ( mN ) feature evaluations.

Proof. The range of values ofr such thatr � rmax = min
�

mN
K ; (N � K )2m

KN

�
can be split into the interval

r � mN
K and the interval(N � K )2m

KN � r mN
K . We will consider these two intervals separately and provide

adversarial strategies for both.
Case 1: r � mN

K . Let m0 = mN
K . The adversary posesm0 targets to the learner chosen at random from

all theN features. Thus, the learner is forced to examine
 ( N ) features on each target. Then, the adversary
choosesK features to be good features, thereby marking some of the targets as good targets. We show that,
of them0targets, there are� ( m) good targets and onlyO (r ) bad targets. Therefore, this is a valid sequence
of targets and furthermore, on this sequence the learner examines
 ( m � N ) features.

To count the number of good targets, we observe thatm0 = 

� N

K

�
. Then from Chernoff bounds, with

high probability1 � O(1), we have that�
�
m0K

N

�
i.e., � ( m) targets are good targets. Sincem0 � r , we

have onlyO (r ) bad targets.

Case 2: r < mN
K ; r � (N � K )2m

KN . Now, we setm0 =
q

rNm
K and samplem0 targets at random from the

pool of all N features. Then we pickK random features to be the metafeatures and then presentm good
targets choosing randomly from the pool ofK metafeatures.

To count the number of good targets in the �rst sequence ofm0 targets, observe thatm0 � N because

r � KN
m . Hence, with high probability1 � O(1), the number of good targets is�

�
m0K

N

�
= �

� q
rKm

N

�
.

Sincer � mN
K , this is O(m). Similarly, with high probability1 � O(1), the number of bad targets is

�
�
m0N � K

N

�
= �

� q
rNm

K � N � K
N

�
= �

�
p

r �
q

(N � K )2m
KN

�
. Then using the inequalityr � (N � K )2m

KN ,

we get that the number of bad targets isO(r ). Thus, this is a valid sequence of targets. Furthermore, on

�
� q

rKm
N

�
good targets, the learner is forced to examine
 ( N ) features. Thus, on the �rst sequence

the learner examines

� p

rKmN
�

features overall. Sincer � (N � K )2m
KN , this is
 ( m(N � K )) . On the

second sequence the learner examinesO (mK ) features overall. In total, this is
 ( mN ) feature evaluations.

7 Discussion and Open Problems

Lifelong learning is an important goal of modern machine learning systems that has largely been stud-
ied only empirically. In this work, we theoretically analyze lifelong learning from the perspective of
feature-ef�ciency. More speci�cally, we show how, when a series of tasks are related through metafeatures,
knowledge can be extracted from previously-learned tasks and stored in a succinct representation in order to
learn future tasks by examining only few relevant features on the training datapoints. To this end, we present
feature-ef�cient lifelong learning algorithms with guarantees for widely studied classes of targets, namely,
decision trees, decision lists and real-valued monomials and polynomials. We also present algorithms for
an agnostic scenario where some of the targets may be adversarially unrelated to the other targets. Finally,
we derive lower bounds on the feature-ef�ciency of a lifelong learner in this model, which show that under
some conditions, the guarantees of our algorithms are tight.
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An open technical question is whether our lower bounds can be extended to incorporate problem-
speci�c parameters such as the depth of a tree/list or the degree of a monomial/polynomial. In particular,
while the feature-ef�ciency bound for our decision tree learning algorithm has a dependence ofKd , it
is not clear whether a bound ofK + d is achievable. Another open question is whether it is possible to
characterize the hardness of recovering the metafeatures exactly in the case of decision trees and lists (even
though our algorithms work without having to recover the metafeatures exactly). Finally, we note that as a
high level direction for theoretical research in lifelong learning, it would be interesting to explore different
ways of formalizing task relations for various families of targets, and to explore the different kinds of
resource-ef�ciency bounds they can guarantee, while also understanding their limitations.
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A Decision Trees

We �rst present proofs from Section 3. Then, in Appendix A.2, we present results for more models of
decision trees.

A.1 Proofs from Section 3

Now, we present our baseline lifelong learning algorithm that simplyremembers features that have been seen
as metafeatures in its learned representation.

Theorem 16(Naive lifelong learning of decision trees). There exists a naive lifelong learning protocol for
decision trees in the model of Problem Setup 1 evaluatesO (S(KN + mKs )) features overall.

Proof. The naive approach follows from a simple observation. If we knew beforehand the set of features
that are involved in a treeg(j ) , then in order to learn the tree, at any given node we require the learner to
evaluateGain only over these features to determine the best split at that node. Thus, our protocol will
just maintain the set of features present in any tree learned from scratch so far, so thatUSEREP can use
these as “metafeatures” to carry out its evaluations limited to these features. Then, any target that can be
represented using metafeaturesf 2 F that have been seen before in some other target, will be learned
using our metafeatures. In other words whenUSEREP fails, the target is guaranteed to contain an “unseen”
metafeature fromF . Thus, we will learn targets from scratch at mostjFj = K times. Since each metafeature
in F has at mosts distinct features, we will have to evaluate only at mostKs features when not learning
from scratch.

We now present the pseudocode for the different subroutines described informally in our discussion.

Algorithm 10 AFFIX(f; u; f 0): Af�x f 0 to f at empty leaf nodeu in f

1: Input: Incomplete decision treesf; f 0, empty leaf nodeu in f
2: Assign tovar (u) the root variable off 0.
3: Create descendants nodes ofu and assign variables to them such that the tree rooted atu is identical to

f 0.

Algorithm 11 LABEL(f; u; l ): Assignl to u in f

1: Input: Incomplete decision treef , empty leaf nodeu in f , labell 2 f + ; �g
2: Assign to leaf nodeu the labell .

Algorithm 12 CONFLICT(f; w; u; f 0) andINDUCE(f; w; u; f 0)

1: Input: Incomplete decision treesf; f 0, nodew in f , nodeu that is a descendant ofw or equal tow
itself.

2: Let V be the set of nodes inf that are ancestors ofu but not ofw.
3: Mapw in f to the root node off 0.
4: Similarly map all descendant nodes ofw from V to the nodes in the corresponding path inf 0.
5: Output of CONFLICT(f; w; u; f 0): If there are two internal nodesv 2 f andv0 2 f 0 mapped to each

other butv 2 V , var (v) 6= var (v0), output true. Else output false.
6: Output of INDUCE(f; w; u; f 0): Let u0be the node fromf 0mapped tou. Outputvar (v0).
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We now prove our result for the semi-adversarial model, where in any given target, eachf 2 F has at
least apmin probability of being the topmost metafeature.

Theorem 17 (Lifelong learning of decision trees in semi-adversarial model). There exists a lifelong

learning protocol for decision trees that evaluatesO
�

1
pmin

log K
� � N + m(K + d)

�
features overall in a

semi-adversarial model where each element ofF has at least apmin probability of being the topmost element

of any target. The protocol learns only the �rstO
�

1
pmin

log K
�

�
targets from scratch, adds them to~F and

then usesUSEREP Algorithm 2 to learn all the subsequent targets from~F .

Recall that direct application of Lemma 4 implies that we will learn the subsequent targets examining

O
�

1
pmin

logK + d
�

features per example. However, a more careful analysis making use of the fact that

each element in~F is in fact fromDT(F ) shows that we will examine onlyO (K + d) features per example.
Note that this is an improvement because1pmin

logK � K logK .

Proof. Consider the protocol from Theorem 17 that learns the �rstO
�

1
pmin

log K
�

�
targets from scratch, and

adds them all to~F . Then with probability at least1 � � , each metafeature fromF will be at the top of some
metafeature from~F . That is,DT(F ) � DT(Pref( ~F )) . Then, from Theorem 2 clearly Algorithm 2 can
learn any future target fromDT(F ) as the target will also lie inDT(Pref( ~F )) . Now, by a direct application

of Theorem 2 this means we evaluateO
�

1
pmin

log K
� + d

�
features per example.

However, we can prove a tighter bound ofO(K + d) by following the proof technique for Lemma 4
but using to our advantage the fact that the metafeatures in~F are not arbitrary trees, but in fact members
of DT(F ). First of all, observe that the number of type A costs along any path is in factK and notj ~Fj
because the metafeatures in~F can have only one of at mostK variables at its root. Now, for the �rst case
within type B, we will pay a cost ofd as before. However, for the second case, observe that any variable
that is induced atu by a metafeature~f 2 ~F , is in effect induced by a metafeaturef 2 F . That is, when we
computeINDUCE(~g; w~f ; u; ~f ) for some metafeature~f 2 ~F , we effectively computeINDUCE(~g; wf ; u; f )
for some metafeaturef 2 F . Similarly we can argue that whenever we makeku distinct feature queries at a
particular nodeu during the algorithm, for all nodes beyondu in that path, we effectively eliminate queries
arising fromku � 1 metafeatures fromF (and not ~F as before). This will result in a total cost ofjFj = K
for this case.

A.2 More Lifelong Learning Models for Decision Trees

A.2.1 Decision Trees with Anchor Variables

In this section, we consider a lifelong learning model of decision trees that assumes a more structured repre-
sentation where each metafeature in~F has a variable at its root that does not occur in any other metafeature.

Problem Setup 5.Besides the assumptions in Problem Setup 1, we assume that for each metafeaturef i 2 F
there exists a unique anchor variableai 2 [N ] that occurs only at the root node off i and not in any other
node off i or any other metafeature ofF .

In this setup, we again useUSEREP Algorithm 2. However, forIMPROVEREP, we modify Algorithm 3
slightly. More speci�cally, after identifying a path ing that was learned incorrectly using~F , we pick exactly
one subtree from this path and add it to~F (instead of alld subtrees). We show that the total number of
features evaluated reduces from a factor ofKd to K + d.

Theorem 18. In the model of Problem Setup 5, the (USEREP Algorithm 2,IMPROVEREP Algorithm 13)-
protocol for decision trees evaluatesO (KN + m(K + d)) features overall.
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Proof. Like we did in the proof for Theorem 1, we will show by induction that ifk targets have been learned
from scratch, then there exists a set ofk true metafeaturesF 0 � F such that each metafeaturef 2 F 0 is the
pre�x of some metafeature in~F . Then as we saw earlier, after learningK trees from scratch, we can show
that learning using~F will never fail. To prove our induction hypothesis, we claim that in any incorrectly
learned path ofg, the topmost node (sayu) that con�icts with the incorrect output~g has to contain an anchor
variable that is not at the root of any metafeature inF 0. This would mean that when we place the subtree
rooted atu in ~F , we are adding a tree whose suf�x is anf 2 F that does not belong toF 0. Essentially, we
strictly increase the number of learned metafeatures by1 for every failure ofUSEREP.

Now we need to prove thatu, the topmost con�icting node in some path ofg indeed contains an anchor
variable that is not at the root of any metafeature fromF 0. Let u0 be the corresponding node in~g. This
means that for all ancestors ofu0, we assigned the correct variable, but something went wrong inu0 and
hencevar (u) 6= var (u0).

Now, if var (u) was an anchor variable, but one that occurs already at the root of somef 2 F 0, we
will certainly assignvar (u) to u0 which is a contradiction. On the other hand, consider the case in which
var (u) is a non-anchor variable. Thenu corresponds to a metafeaturef that occurs ing and furthermore, the
anchor variable inf is in one ofu's ancestors, saywf . In other words,CONFLICT(g; wf ; u; f ) is false and
INDUCE(g; wf ; u; f ) = var (u). Note that by de�nition ofw0, the corresponding node ofwf in ~g, sayw0

f ,
has been assigned the correct anchor variablevar (wf ). Note that in the algorithm this assignment would
have corresponded to a particular metafeature~f 2 ~F and a nodew0

~f
in ~g such thatCONFLICT(~g; w0

~f
; w0

f ; ~f )

is false andINDUCE(~g; w0
~f
; w0

f ; ~f ) = var (wf ). By the run of Algorithm 13, we have that in~f , if the anchor

variable off exists thenf exists as a whole too. More formally, this translates toCONFLICT(~g; w0
~f
; u0; ~f )

being false andINDUCE(~g; w0
~f
; u0; ~f ) = var (u). This means that we will indeed assignvar (u) to u0which

is a contradiction. Thus,u can only contain an anchor variable not already the root of any element inF 0.

Algorithm 13 IMPROVEREP - Decision Trees with anchor variables at the root

1: Input: Old representation~Fold and a treeg 2 DT(F ) learned from scratch and the incorrect tree~g
learned using~Fold.

2: ~F  ~Fold

3: Identify a path starting at the root of~g such that the corresponding path ing is shorter.
4: Identify the topmost node in this path ing which con�icts with the corresponding node in~g.
5: Add the subtree ing rooted at this node to~F .
6: Return ~F

A.2.2 Sparse Decision Trees with Overcomplete Representations

In this section, we consider another model wherein we assume that we have a very large metafeature set
(of cardinality greater thanN ) and that each decision tree is constructed in a semi-adversarial manner. Our
model, in some sense, is intended to capture noise. In particular, consider a metafeature set that is generated
from the much smaller metafeature set from Section A.2.1 by creating many noisy duplicate copies of each
metafeature. The noisy duplicates preserve the structure and the root variable of the original metafeature but
may have different variables located in its non-root nodes. Clearly, this metafeature set affords a much larger
representation which captures slight deviations from a rigid pattern. First observe that the “anchor” variables
are no longer unique to a single metafeature, but are common to multiple metafeatures that however have
the same structure. Now, we assume that each anchor variable has at least apmin probability of being the
root variable in any target. Note that this is not as strong an assumption as the previous semi-adversarial
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model because this allows for the case where some metafeatures do not occur in the top of the model at
all. Finally, we assume that our targets require onlysparse representationsin that along any path down the
target, at mostt metafeatures fromF have been af�xed. Below, we state our model formally.

Problem Setup 6. Besides every assumption in Problem Setup 1 except the metafeature assumption, we
assume the following:

� Metafeatures: We assume that the metafeature setF = F1 [ F 2 : : : [ F K 2 where eachFk consists of
at mostK 1 metafeatures of the same tree structure and the same root anchor variableak . This root
anchor variable does not occur anywhere else inF .

� Semi-adversary: Each anchorak has at least apmin probability of being the root metafeature in any
targetg(j ) .

� Sparsity: Any targetg(j ) can be constructed usingF in a manner that uses at mostt metafeatures
down any path from the root to a leaf ing(j ) . Typicallyt � K 2.

Observe that the metafeature set is of cardinality at mostK 1K 2. We now present a lifelong learning

protocol that learns at mostK 1K 2 + O
�

1
pmin

log K 2
�

�
targets from scratch, and learns the rest examining

only O (tK 1 + K 2 + d) features per example. Thus, given a constant sparsity parametert, to ensure that
we evaluateo(mN ) features, we can allow dictionaries of cardinalityK 1K 2 = o(N 2). We now state our
result formally. The idea is that we �rst learn a few targets from scratch and identify the anchors. Then, we
partition any target thatUSEREP fails on into trees rooted at one of these anchors and add these trees as
metafeatures hoping that we add at least one new metafeature fromF to our representation.

Theorem 19. There exists a lifelong learning protocol for decision trees in the model of Problem Setup 6

that evaluatesO
��

K 1K 2 + O
�

1
pmin

log K 2
�

��
N + m(K 1t + K 2 + d)

�
features overall. The algorithm

�rst learns O
�

1
pmin

log K 2
�

�
targets from scratch to identify theK 2 anchor variables. The algorithm then

usesIMPROVEREP Algorithm 14 andUSEREP Algorithm 2.

Proof. Let I F be the set ofK 2 anchor variables. Under our assumptions, with high probability each of them

will be the root of one of the �rstO
�

1
pmin

log K 2
�

�
targets, and since no other variable can be a root of any

target, we will identify them completely and correctly.
In any future tree thatUSEREP fails on, we learn the tree from scratch and partition the tree into

metafeatures based onI F and them to~F . We claim that ~F � F at any point of time and its cardinality
strictly increases with each failure ofUSEREP. Then with K 1K 2 failures of USEREP, we will have
~F = F , after which we will not see any failure. Assume this is true at some point of the run. When
USEREP fails on a new targetg, it means thatg =2 DT(Pref( ~F )) . However, sinceg 2 DT(F ), this implies
thatg is constructed using at least one metafeaturef 2 F � ~F . Now observe that we would have identi�ed
the root and leaves off in g correctly (because we would have identi�ed all anchors ing correctly). Then,
we would have addedf to ~F , thereby satisfying our induction hypothesis.

By a direct application of Lemma 4 on the representation~F , we get that we examineO (K 1K 2 + d)
features per example which is uninteresting. However, we can tweak the argument we had for its proof for
this case. First of all, we will have onlyK 2 type A costs (i.e., feature examinations) and notK 1K 2. Then,
for type B costs, in sub-casea, we will have a cost ofd as before. For sub-caseb, the cost was equal to
the number of metafeatures in~F , which would equalK 1K 2 in this case. However, note that these costs
correspond toINDUCE(~g; w~f ; u; ~f ) for different ~f such thatw ~f contains the anchor variable in~f . In total,
we know that there are only at mostt anchor variables along a particular path, and hence onlyK 1t different
metafeatures effectively result in some feature costs of this type. Hence, by restricting our analysis to only
these metafeatures, we can show that the feature cost is proportional toK 1t and not toK 1K 2. In total, this
would amount to a cost ofO (K 1t + K 2 + d)
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Algorithm 14 IMPROVEREP - Decision Trees with a Sparse but Overcomplete Representation

1: Input: Old representation~Fold, I F the set of anchor variables, and a treeg 2 DT(F ) learned from
scratch.

2: ~F  ~Fold

3: Identify the locations of variables fromI F in g and partitiong into trees rooted at one of these variables
each. Add each tree to~F .

4: Return ~F

B Monomials

In Appendix B.1, we present a simple algorithm for learning monomials exactly from scratch under some
assumptions. Then in Appendix B.2, we present our baseline lifelong learning algorithm for monomials.
We also present Lemma 25 which we used to show that it is suf�cient to check our prediction on a single
randomly drawn example to verify whether the monomial we learned is correct.

B.1 Learning Monomials from Scratch

Recall that for any inputx = ( x1; x2; : : : xN ) 2 RN , we denote the output of ad-degree target monomial
g = ( g1; g2; : : : ; gN ) by the functionPg(x) = xg1

1 xg2
2 : : : xgN

N wheregi 2 N[f 0g and the degree
P

i gi � d.
We denote the unknown metafeature setF = f f 1; f 2; : : :g also as a matrix where columni is f i . Therefore,
saying thatg can be expressed usingF is equivalent to sayingg lies in the column space ofF denoted by
C(F ). Then for anyk� rank (k � K ), N � k matrix ~F and for anyg 2 C( ~F ), we de�new ~F (g) 2 Rk to
denote the unique vector of column weights such that~F w ~F (g) = g.

For each monomial target, we assumed thatD (j ) is a product distribution i.e., the features are indepen-
dent. We now state some speci�c assumptions aboutD (j ) . In particular, we assume that the variance of each
variablex i is not too small. The rationale is that if the variance was very small (in the extreme case, imagine
x i being a constant), the factorxgi

i would essentially be a constant factor in the monomial target. While it
may be possible to design a more careful learning algorithm that can extract these nearly constant factors,
that is beyond the scope of our discussion.

Secondly, we assume that the probability density function is �nite at every point i.e., the probability
distribution is not too concentrated at any point. We will use this assumption to apply Lemma 25 when we
draw a single sample to verify whether the monomial we have learned matches the true monomial.

Finally, we assume that the support ofx i is [1; 2]. While the upper bound of2 is to simplify our
discussion, the lower bound is to avoid dealing with values ofx i that are close to zero. This is essential
because as we will see later, we will deal with logarithmic values ofx i in the learning process. We now state
our assumptions formally.

Assumption 1. EachD (j ) is a product distribution. LetD (j ) = � (j )
1 � � � � � � (j )

N . We assume that for all
featuresi :

� Minimum varianceV ar
� ( j )

i
(log x i ) � c.

� Bounded probability density8x i 2 R, � (j )
i (x i ) 2 R.

� Bounded supportThe support of� (j )
i is [1; 2].

We now present our simple poly-time technique for learning monomials from scratch with polynomially
many samples. Recall that the output of the monomialg on an inputx is denoted byPg(x). Let us denote
the logarithm of this outputlog jPg j by Qg . Observe that learningg is equivalent to learning the coef�cients
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of the `linear' functionQg . To see how this can be done, we will de�ne a notion of correlation/inner product
of two functionsh(x) andh0(x):

hh(x); h0(x)i , E[h(x)h0(x)]:

Then, we claim thatgi can be expressed as the following inner product.

Lemma 20.
hQg(x); log(x i ) � E[log(x i )]i

E[log2 x i ] � E2[logx i ]
= gi

Proof. Sincex i is picked independent of the other variables, so is the random variable(log x i � E[log(x i )]) .
Thus, whenj 6= i

E[logx j (log x i � E[log(x i )])] = E[logx j ] � E[logx i � E[log(x i )]] = 0

However,
E[logx i (log x i � E[log(x i )])] = E[log2 x i ] � E2[logx i ]

Then, the claim follows from our de�nition ofQg .

Observe that using the above fact, we can calculategi for eachi 2 [N ] exactly if we were provided the
exact values of each correlation term in the equality. However, the best we can hope for is to approximate
these terms using suf�ciently many samples. Fortunately, we can actually approximate each of these corre-
lation terms to a small constant error such that these errors together imply a constant error smaller than1=2
in estimatinggi . Then we can round off our estimate to the closest natural number to �nd the exact value
of gi . We now summarize our simple algorithm for learning a monomial from scratch, and then prove our
polynomial sample complexity bound.

Algorithm 15 Learning a monomial from scratch

1: Input: DistributionD overRN

2: DrawS samples(x; Pg(x)) from D and query all the features on all samples.
3: for i = 1 ; 2; : : : N do
4: EstimateE[log2 x i ], E[log2 x i ] � E2[logx i ], andhQg(x); log(x i ) � E[log(x i )]i empirically.
5: Round off

hQg(x); log(x i ) � E[log(x i )]i

E[log2 x i ] � E2[logx i ]

to estimategi .
6: Return~g

Clearly the above algorithm has polynomial running time and sample complexity as long asS is polyno-
mial. The crucial guarantee we need now is that polynomially many samples are suf�cient to estimate each
gi exactly, which we show in Theorem 23. We �rst begin by bounding the error in estimating the numerator
hQg(x); log(x i ) � E[log(x i )]i in Lemma 21. Then, in Lemma 22 we show how this error and the error in
the denominator terms, add up to result in an error of at most1=2 in estimatinggi . Using these, we prove
in Theorem 23 that the algorithm estimates each power exactly. In the following notation we will use~E to
denote the empirical estimate of an expected value.

Lemma 21. Using a sample setS of sizeO
�

d
� 2

3
log 1

� 0

�
, for a giveni 2 [N ], if j ~E[logx i ] � E[logx i ]j � � 1,

then we can guarantee that

P r

" �
�
�
�
�

1
jSj

X

x 2 S

Qg(x)(log(x i ) � ~E[log(x i )]) � h Qg(x); log(x i ) � E[log(x i )]i

�
�
�
�
�

� d�1 + � 3

#

= O
�
� 0�

.
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Proof. Consider the random variableQg(x) � (log(x i ) � ~E[log(x i )]) . It is easy to show thatQg(x) log(x i ) 2
[0; d] with the extreme values attained atx = (2 ; 2; : : :) andx = (1 ; 1; : : :). Then,Qg(x)E[log(x i )] 2 [0; d].
Thus, the random variableQg(x)�(log(x i )� ~E[log(x i )]) lies in a range of size2d. Then, by Chernoff bounds,
we can show that

P r

" �
�
�
�
�

1
jSj

X

x 2S

Qg(x)(log(x i ) � ~E[log(x i )]) � h Qg(x); log(x i ) � ~E[log(x i )]i

�
�
�
�
�

� � 3

#

= O
�
� 0�

from which the above claim follows because the absolute difference betweenhQg(x); log(x i ) � E[log(x i )]

andhQg(x); log(x i ) � ~E[log(x i )] is at most
�
�
�maxx Qg(x) � (E[log(x i )]) � ~E[log(x i )]))

�
�
� � d�1 (because

the �rst term is at mostd and the next is at most� 1).

Lemma 22. Using a sample setS of sizeO

 
d�

min( c2
d ; c

d ;1)
� 2 log 1

� 0

!

with a high probability of1 � � 0 for a

giveni 2 [N ] we can learn~gi such thatj ~gi � gi j � 1
2 .

Proof. Let � 1 and� 3 be as de�ned in Lemma 21. Additionally letj ~E[log2 x i ] � E[log2 x i ]j � � 2. From the

previous results and from Chernoff bounds, we have that� 1; � 2; � 3 are allO
�

min( c2

d ; c
d ; 1)

�
given the size

of S. We now have a fractional expression on the right hand side of the equation in Lemma 20 for which we
can derive the error in estimating the numerator and the denominator individually. We need to show that the
overall error in estimating the fraction is1=2 i.e.,O(1). Now, the error in estimating some fractionG

H using
~G
~H

given thatjG � ~Gj � � G andjH � ~H j � � H can be upper bounded by:

�
�
� G� � G

H � � H
� G

H

�
�
� =

�
�
� � G

H � G� H
(H � � H )H

�
�
�

� � G
min H + (max G+ � G )� H

(min H � � H ) min H

In our case, we haveH = E[log2 x i ] � E2[logx i ] andG = hQg(x); log(x i ) � E[log(x i )]i , min H = c and
maxG = d. Also, � G = � 1d + � 3 and� H � � 2 + 2 � 1 + � 2

1. The latter inequality follows from the fact that
the error in estimatingE[log2 x i ] is � 2 and the error in estimatingE2[logx i ] is at most(E[logx i ] + � 1)2 �
E2[logx i ] � � 1(2E[logx i ] + � 1) � � 1(2 + � 1). By a simple calculation, it can be veri�ed that this results in
a total error ofO (1) in estimatinggi .

Theorem 23. Algorithm 15 exactly learns a targetg from scratch with high probability1 � O
� �

K

�
with

S = O

 
d�

min( c2
d ; c

d ;1)
� 2 log Nm

�

!

samples.

Proof. From Lemma 22 we have that eachgi is accurately estimated with probability at least1 � O
� �

Nm

�
.

By a union bound,g is accurately estimated with probability at least1 � O
� �

m

�
.

We note that it is easy to re�ne our application of union bounds to use slightly fewer samples than in the
bound of Theorem 23. In particular, it is possible bring thelogNm factor down tologNK while learning
from scratch, and tologKm on all other targets.
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B.2 Naive Lifelong Learning of Monomials

We present our straightforward approach for lifelong learning of monomials which merely keeps a record
of features that have been seen in earlier targets.

Theorem 24(Naive lifelong learning of monomials). In the model of Problem Setup 2, there exists a naive
algorithm for lifelong learning of monomials that evaluatesO (S(KN + mKd )) features overall.

Proof. (Sketch) We useIMPROVEREP Algorithm 5 that essentially stores the list of targets that have been
learned from scratch as the columns of the matrix~F . Now, consider the set of features that have been “seen”
so far i.e., these correspond to rows in~F that have at least one non-zero entry. Then, for a new targetg,
we de�ne aUSEREP algorithm that determines the powers of only these features. This can be done by
evaluating only those features on the data set using the technique in Algorithm 15. The unseen features are
assumed to have zero power.

Now, consider a new targetg that is “linearly dependent” on the targets that have been learned so far
i.e., g 2 C( ~F ). In this case, the unseen features should have a zero exponent ing as it is zero in all earlier
targets. Thus, ourUSEREP technique would not fail on such targets. Now, ifg was linearly independent, it
is possible that an unseen feature has a non-zero exponent ing. To verify whether this is the case, we can
draw a single sample and check whether our prediction matches the true output. If this fails, we learn the
target correctly from scratch and add it to~F .

Thus, since we add only linearly independent targets to~F , in a manner similar to the proof of Theorem 6,
we can show thatUSEREP will not fail more thanK times. Our result follows from here because each of
the targets that we learn from scratch have at mostd non-zero exponents. Then, in total we only have at
mostKd “seen” features i.e., features with non-zero powers that we always examine.

B.2.1 Monomial Identity Testing

We show here that it is suf�cient to draw a single example and check whether our prediction matches the
true label in order to conclude whether the monomial that we learned is indeed the true monomial. Here, we
make use of the condition that the probability distribution is smooth in that the probability density function
at any value of a feature is �nite.

Lemma 25. If for every featurei , the marginal probability density function atx i is �nite for all values ofx i

then we have that for anyg0 6= g, P r [Pg0(x) 6= Pg(x)] = 1 .

Proof. We will prove by induction onN 0 � N andd0 � d that for any polynomialP0of degreed0overN 0

variablesP r [P0(x) = 0] = 0 . Then, we only need to plug inP0 = Pg � Pg0 to complete the proof.
For the base case assume the polynomial is only over one variable and any degree i.e.,N 0 = 1 and

any d0 � d. Then the event[P0(x) = 0] corresponds to picking one of at mostd0 zeroes ofP0 from R
(sinceN 0 = 1 ), which amounts to a probability of0 according to the assumption on the probability density
function.

Now assume for allN 0 < N andd0 � d, our induction hypothesis is true. The polynomialP0 can be
expressed as a summation of terms inx1:

P k
i =0 P00

i (x2; : : : xn )x i
1 wherek is the highest degree ofx1 and

P00
i is the coef�cient ofx i

1. Then, for a �xed value ofx2; : : : xN , P0 reduces to a polynomial of degree
k � d over one variable. Then, our induction assumption implies that conditioned on some arbitrary values
of x2; : : : ; xN , the polynomial inx1 attains zero with probability0 i.e., P r [P0(x) = 0 j x2; : : : xN ] = 0 .
Then it follows thatP r [P0(x) = 0] = 0 .

35



B.3 Polynomials

We now describe our straightforward lifelong learning approach for polynomials which remembers only the
features that have been seen so far.

Theorem 26(Naive lifelong learning of polynomials). In the model of Problem Setup 3, there exists a naive
algorithm for lifelong learning oft-sparse polynomials that makesO (S(KN + mKd )) feature evaluations
in total.

Proof. (Sketch) This approach is very similar to the naive approach for lifelong learning of monomials. We
will use IMPROVEREP Algorithm 7 which, as we know already, maintains a list of linearly independent
monomial targets that have been seen in the polynomials learned from scratch so far. Now, for a new target
G, we will perform the “lexicographic search” method from [2] over only the features that have been seen
i.e., during the search we skip features that correspond to an all zero row in~F . Essentially, we assume that
the unseen features do not occur in the target polynomial. We again check whether the polynomial computed
this way is correct by verifying it on a single sample.

Using this approach we are guaranteed that ifG � C( ~F ) � R, USEREP does not fail because such a
target will not contain unseen features in any of its monomials. Then, we can use an argument similar to
Theorem 24 and show by contradiction thatUSEREP can fail at mostK times, and hence evaluate onlyKd
features per example.
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